filter or in a requirement for extra messages compared to their own connections. They can refuse to provide certain information collected from customers and stored in the network on the basis that the information is proprietary. They can refuse certain forms of interconnection and thereby force a competing carrier or other third party to store sensitive customer information on the BOC network rather than in its own network. An example of this would be a BOC refusal to provide interconnection between their SCP and a competitive interexchange carrier's data base. In the regional department store illustration provided above, this would force the competitor to place sensitive customer information on the BOC's data base. They can also refuse to develop, deploy, and execute certain types of service logic based on potential harm or developmental costs or priorities.

Rather than outright refusal, the BOCs, including Ameritech, can resort to a "slow roll" of their competitors or potential competitors. They can initially respond to an interconnection-related request (e.g., for the conveyance of a particular type of control message over the local signaling channel or the deployment of particular service logic) on the basis that they don't understand it technically, they can refuse to provide or be slow in giving the requester essential technical information; they can assert that the request is not technically feasible or must involve time-consuming study; after agreeing that it is technically possible, they can delay by arguing that standards must be developed; they can argue that any required modifications to the network will take a long time and require extensive testing. If they finally offer the requested capability, they can charge unreasonable prices.

In addition, in requesting modifications of the local switches necessary to provide new service offerings, the unaffiliated carrier would be forced to reveal technical information to its competitor, Ameritech, on its intended technical approaches. This alone puts the unaffiliated carrier at a significant disadvantage. Ameritech could give its long-distance affiliate discriminatory access to this information, while protecting comparable information obtained from its affiliate from unaffiliated competitors.

Because of the technical complexity of the SS7/AIN architecture, the critical role it plays as the nervous system of the network, and the necessarily more limited technical knowledge of outsiders, determining whether a particular refusal or delay is justified becomes an almost impossible task for competitors and regulators alike. Faced with claims that certain competitively critical forms of interconnection (or unbundling) are not technically feasible or, especially, that they would cause harm to the network, it is almost certain that the regulator would not require the requested form of interconnection or that it would continue in such a cautious fashion that it would seriously hinder or delay the unaffiliated carrier. The ability to refuse or delay such requests puts Ameritech in the position of controlling the development of new and competitive services, both as to whether the new service is created at all or, more subtly, when it comes to market and who can provide it. Through these means, Ameritech and the other BOCs can extend their monopoly power over physical facilities (e.g., the local loop) upward into the signaling network and software driven service logic and thereby discriminate against their interexchange competitors.¹⁹

In summary, the increased complexity of the interface between local and long-distance networks increases the risk of discrimination and makes it more difficult for regulators to prevent,

Using their control over lower level signaling and switching functions to favor their own software driven services is not unlike the allegations that Microsoft has used its control over personal computer operating systems to unfairly dominate the market for applications software.

detect, and remedy it. This is in contrast to the early days of interexchange competition when competitors were largely satisfied if they could obtain the basic forms of interconnection required to achieve equal access and to offer "plain vanilla" long-distance service. With intensified competition and changing customer requirements, however, long-distance carriers, by necessity, have increased their use of network-based intelligence for differentiating their services from those of the competitors. However, as explained above, the provision of these differentiated, softwarebased services depends upon the cooperation of the local exchange carrier. The interexchange carriers are dependent upon incumbent local exchange carriers for certain critical information (e.g., state of the called line) and for the conveyance of that information across the local carrier's bottleneck facilities. In short, just at the time the long-distance carriers need more cooperation from the BOCs such as Ameritech, they face the prospect of the BOCs becoming competitors if in-region, interLATA service is granted prematurely. Because of the requirement for different and more complex forms of interconnection (e.g., those necessary to provide multimedia services), past experience with the interconnection of traditional voice and data networks will be less useful as a regulatory tool for preventing, detecting, and remedying discrimination.

B. The Example of ONA

Evidence of the ability of the incumbent local exchange carriers, including Ameritech, to raise claims of technical harm and technical infeasibility in the provision of advanced forms of interconnection and thereby discriminate and thwart or delay the development of advanced competitive services is contained in the history of Open Network Architecture before the FCC. In Computer Inquiry III, which was launched in 1985, the Commission determined that the BOCs should be allowed to provide unregulated enhanced services jointly with their regulated basic local

exchange services if they met certain conditions. In other words, they were relieved of the long-standing requirement to offer such unregulated services through a separate, arms-length subsidiary subject to a set of conditions.

One of the most important of these conditions was a requirement that the BOCs unbundle their local exchange networks and offer the resulting Basic Service Elements (BSEs) to all enhanced service providers (including their own internal enhanced service operations) on a tariffed basis and under the same terms and conditions. The notion was that both the BOCs and the unaffiliated providers would then use these basic building blocks to construct their own competitive enhanced service offerings. This concept of unbundled BSEs that the Commission tried to implement in the ONA proceeding is similar to the requirement for unbundled network elements in the '96 Telecommunications Act.

The concept of unbundling and allowing all enhanced service providers to have access to the basic building blocks of the local telephone network was called Open Network Architecture (ONA). With ONA, it appeared that the FCC had ordered the ultimate unbundling of the local exchange network into its component parts. However, the ONA Plans submitted to the Commission by the BOCs to meet the ONA requirements were based upon the "Model ONA Plan" developed by Bellcore (which was owned by the BOCs). The model destroyed the very essence of the ONA concept as originally envisioned by the Commission. It also failed as a true open architecture as that term is understood in the computer and telecommunications industries. It did so by introducing the concept of a Basic Serving Arrangement, or BSA, which essentially maintained the status quo by defining the fundamental building blocks to be equivalent to the degree of bundling in the existing local exchange network. What they ended up offering as BSEs

amounted to little more than enhancements to the custom calling features (such as call forwarding or call waiting) that were already available on modern local Central Office switches.²⁰ Thus, by using the Common ONA Model and raising claims of technical harm and technical infeasibility, the BOCs were able to prevent the adoption of a truly unbundled, open architecture as originally envisioned by the Commission. Moreover, the BOCs priced the BSAs (which enhanced service providers were required to acquire as a condition of obtaining the limited set of BSEs) so high that they have proven largely unattractive to enhanced service providers. Instead, enhanced service providers have continued to buy ordinary business lines in order to offer services to their own customers. These tactics, coupled with refusals to provide for the collocation of enhanced service provider equipment in their local Central Offices, effectively killed the Commission's initial attempts at unbundling.

Although the Commission, in the face of stiff BOC opposition, refused to order what it referred to as fundamental unbundling, it recognized that further unbundling might be in the public interest. Consequently, the Commission ordered the BOCs to study further unbundling through the Information Industry Liaison Committee (IILC) within the Exchange Carriers Standards Association (ECSA).²¹ As a result of the FCC's order, the IILC eventually established a group to address issues relating to network unbundling. This group, named the Task Group for IILC Issue 026, included both BOC and non-BOC representatives. The Task Group for IILC Issue 026

For a more complete discussion of these issues see "Open Network Architecture: A Promise Not Realized," Hatfield Associates, Inc., Boulder, CO (April, 1988).

Filing and Review of Open Network Architecture Plans, CC Docket No. 88-2, Phase 1, Memorandum Opinion and Order, 4 FCC Rcd 1, at 43, para. 72 (1988) (<u>BOC ONA Order</u>). The ECSA was subsequently renamed the Alliance for Telecommunications Industry Solutions (ATIS).

developed a physical and a logical unbundling plan for the local exchange network. In April, 1995, the Task Group reached consensus on Issue 026, and a full IILC meeting subsequently approved the closing documentation. It included the opening of 13 AIN interconnection points. Note that the IILC process alone took several years to complete and, while it led to agreement on some interconnection points, it still left unresolved a host of policy, regulatory, and business issues.

Two other developments during the IILC's deliberations on the unbundling issue are worth noting. First, in late 1991, the Commission launched a Notice of Inquiry to explore the public policy issues relating to the implementation of intelligent network architectures by local telephone companies.²² The Commission's stated goal in the proceeding was "to encourage development of future local exchange networks that are as open, responsive, and procompetitive as possible, consistent with our other public interest goals, such as ensuring network reliability and integrity and avoiding the imposition of uneconomic costs."²³ It should be emphasized that, in launching the Notice of Inquiry, the Commission's primary focus was on giving third parties greater access to the intelligent network architectures being implemented by the BOCs rather than on unbundling local loops, switching, and transport.

As characterized by the Commission in the subsequent rulemaking proceeding,²⁴ parties other than the LECs responded by urging the Commission to intervene to ensure that the LECs

In the Matter of Intelligent Networks, CC Docket No. 91-346, Notice of Inquiry, 6 FCC Rcd 7256 (1991) (Notice of Inquiry).

Notice of Inquiry, 6 FCC Rcd at 7256, para. 1.

In the Matter of Intelligent Networks, CC Docket No. 91-346, Notice of Proposed Rulemaking, 8 FCC Rcd 6813 (1993) (Notice of Proposed Rulemaking).

do not frustrate competition by developing the intelligent network in a closed, proprietary manner that would foreclose open access. The Commission also noted that these parties argued that the intelligent network would be unlikely to develop properly in response to market forces because of (a) the LECs' bottleneck control over the interface between the intelligent applications and the network, (b) the LECs' control over further intelligent network technical developments and implementation, and (c) the LECs' historical resistance to opening their networks to applications by third parties. According to the Commission, the LECs, on the other hand, strenuously argued that market forces were sufficient to ensure procompetitive development of the intelligent network. The Commission went on to note that "[t]hey [LECs] argue that regulatory action is unnecessary and potentially harmful as it could cause market distortions and network inefficiencies, even potentially compromising network reliability."²⁶

In the face of the claims by the LECs/BOCs, especially those relating to network reliability, it is understandable that the Commission took a very cautious approach. It suggested rules and in those rules proposed that third parties only be given mediated access to the intelligent network through the Service Management System²⁷ rather than at the SCP or the local switch (SSP). It also suggested that it would adopt a serial approach in which mediated access might eventually be extended to the SCP and local switch, but only after careful examination of the

Notice of Proposed Rulemaking, 8 FCC Rcd at 6815, para. 14.

Notice of Proposed Rulemaking, 8 FCC Rcd at 6815, para. 15. (Footnote omitted. The omitted footnote specifically refers to, among others, Ameritech's Comments and Reply Comments in the proceeding.)

Service Management Systems are associated with the administration and maintenance of the SCPs in the AIN

benefits and risks at each step. At the time that the Telecommunications Act of 1996 became law in February of 1996, the Commission had not issued an order actually requiring mediated access through the SMS and, as indicated above, the IILC was unable to agree on other forms of fundamental unbundling. Thus, almost exactly a decade passed between the time that the FCC set forth its vision of an unbundled, open local exchange architecture and the signing into law of the '96 Telecommunications Act in February of 1996, and no significant progress occurred during that time.

Not only was there a decade-long delay, it is likely that the unbundling requirements incorporated in the '96 Telecommunications Act resulted from a change in the BOCs' perception of their own strategic interests rather than from any fundamental technical development. Their acquiescence to the unbundling requirements was surely predicated upon obtaining relief from the line-of-business restrictions imposed by the Modification of Final Judgment. In other words, the movement toward a more unbundled, local network was due in a large part to the presence of other policy/regulatory incentives rather than a sudden change of heart regarding the desirability of providing access on such a basis. In short, the BOCs can speed up the provision of advanced forms of interconnection when it suits their strategic interests, and slow down or thwart them when they do not.

I want to make it clear that, in tracing this history of unbundling and ONA, I am not necessarily being critical of the Commission's past efforts to promote a more open architecture both in the original ONA and subsequent IN proceedings, nor in the steps it is taking in its interconnection proceeding to carry out portions of the '96 Telecommunications Act. Rather, I am using it as an example of how the BOCs, including Ameritech, can use claims of technical

harm and technical infeasibility in the provision of advanced forms of interconnection to thwart or delay the development of competitive services by unaffiliated long-distance carriers and other providers.

V. Response to the Affidavit of Daniel J. Kocher

Daniel J. Kocher submitted an affidavit with Ameritech's application to provide in-region, interLATA services originating in Michigan.²⁸ The Kocher Affidavit concludes that:

"... from a technical perspective, Ameritech cannot reasonably engage in a concerted plan to discriminate in favor of itself or [the Ameritech affiliate] ACI, or against other telecommunications service providers. Furthermore, if Ameritech did attempt to engage in such discrimination, that discrimination would be easily detected.²⁹

The joint affidavit of Richard J. Gilbert and John C. Panzar, also filed in support of Ameritech's application, relies, in turn, upon the Kocher Affidavit to reach certain conclusions regarding Ameritech's purported inability to discriminate against interexchange carriers competing with its long-distance affiliate. Because the Kocher Affidavit deals with issues similar to the ones dealt with herein and because it reaches opposite conclusions to my own, I will address his analysis and conclusions in this section.

The essence of Mr. Kocher's conclusion is that discrimination in the quality of access services is impractical or infeasible. According to him, it is infeasible because such discrimination would involve modification of internal software and systems and would require the cooperation of

²⁸ Affidavit of Daniel J. Kocher, dated May 20, 1997 (Kocher Affidavit).

²⁹ Kocher Affidavit, at 4, para. 6.

Joint Affidavit of Richard J. Gilbert and John C. Panzar, dated April 28, 1997, at 17, para. 29.

vendors and Ameritech's own workers coordinated across several departments. He also concludes that these types of internal modifications are not only difficult or impossible to achieve without affecting the quality of Ameritech's own services but are also easily detectable. He argues that discrimination in the provision of services and network elements to other carriers is not practical "because they utilize facilities, switches and systems that were specifically designed to automatically furnish nondiscriminatory service." Mr. Kocher points out that all categories of traffic (local, intraLATA toll, and interLATA toll) arrive on Ameritech's local network in random order, are carried on trunks and loops intermingled with traffic from many carriers, and users are switched by local and tandem switches pursuant to standard software and routing tables. He then goes on to conclude that "the prospect of [Ameritech] conducting a program of concerted discrimination . . . is wholly implausible." I strongly disagree with portions of Mr. Kocher's analysis and conclusions.

Before presenting the reasons for that disagreement, I would like to make one general observation. Mr. Kocher essentially ignores the Intelligent Network concept and related developments that are making the local exchange network increasingly programmable or software driven as I described above. Instead, he focuses on lower level switching and transmission functions rather than on the higher level functions, i.e., the service logic and associated data bases that are so critical to service differentiation in the competitive long-distance market.³³ He only

³¹ Kocher Affidavit, at 4, para. 8.

Kocher Affidavit, at 5, para. 8.

Ameritech itself confirms the importance of such service differentiation in the interLATA market. In an accompanying affidavit, the joint affiants state that "[i]n a rapidly changing industry such as telecommunications, we anticipate that non-price consumer benefits, in the form of service

mentions AIN twice. He mentions it once in conjunction with Ameritech's SS7 network, but only in passing.³⁴ He mentions it again in conjunction with the deployment of two tandem switches by *ACI*, one in Detroit and one in Chicago. He does so in only one sentence: "Finally, both switches are equipped to support Advanced Intelligent Network ('AIN')-based services utilizing ACI's own SS7 network and databases." In my opinion, failure to acknowledge and address Ameritech's ability to use its monopoly power over physical facilities (e.g., the local loop) to favor their own software driven services represents a serious omission on the part of the affiant.

I will now address what is discussed in the affidavit. Mr. Kocher argues that Ameritech's "computer-controlled [end office] switches are designed to operate under stored program control utilizing 'generic' software provided by the switch manufacturers." He then argues that the software routines involved are designed to handle all traffic in a similar manner and that modification to that software would be impossible because it would jeopardize overall network reliability, the software is proprietary and controlled by the manufacturer, and any modification would void the manufacturer's warranty. Mr. Kocher ignores the fact that one of the most compelling motivations for separating the service logic from lower level switching functions (i.e., the intelligent network concept) was to allow *providers* to create new and different service offerings independent of the manufacturer and without waiting for the manufacturer to develop a

innovations and technological advances, would likely confer greater benefits upon telecommunications users than would price-related benefits." Joint Affidavit of Robert G. Harris and David J. Teece, dated May 12, 1997, at 96.

Kocher Affidavit, at 18, para. 36.

³⁵ Kocher Affidavit, at 43, para. 81.

³⁶ Kocher Affidavit, at 6, para. 12.

new software generic. For example, a recent Bell Atlantic-sponsored tutorial on the intelligent network states the following under a general heading entitled "Benefits of Intelligent Networks":³⁷

AIN technology uses the embedded base of stored program-controlled switching systems and the SS7 network. The AIN technology also allows for the separation of service-specific functions and data from other network resources. This feature reduces the dependancy on switching system vendors for software development and delivery schedules. Service providers have more freedom to create and customize services. [Emphasis added]

Or, as the Commission itself reported, "... the BOCs contend that a major goal of AIN is to free them from the 'tyranny' of the switch manufacturer." Thus, contrary to Mr. Kocher's assertions to the contrary, the intelligent network concept enables the BOCs, such as Ameritech, to modify service logic in order to customize services for specific end user or carrier customers. As I showed earlier, it is this ability to fine tune or customize their local networks that enables them to favor (a) their own interexchange operations over their interexchange carrier competitors and/or (b) their own end user customers over the end user customers of their interexchange competitors.

As noted, Mr. Kocher does not address the intelligent network concept, except in passing. Although Mr. Kocher refers to AIN functionality primarily in conjunction with ACI's tandem switches, it would not be correct to infer that AIN technology (or intelligent network technology more generally) is associated only with tandems. The AIN architecture clearly provides for "intelligence" or service logic to be incorporated in SCPs and/or in Intelligent Peripherals or adjuncts associated with individual end office switches. For example, the Bell Atlantic sponsored tutorial referred to earlier (and relying upon the AIN Release 1 architecture defined by Bellcore)

³⁷ "The Intelligent Network Tutorial," URL-http://www.iec.org/tutorial/ain/, downloaded February 2, 1997.

Notice of Inquiry, 6 FCC Rcd at 7257, para. 5.

clearly shows an Intelligent Peripheral and adjunct connected directly to an end office SSP.³⁹

Indeed, in its comments in the Intelligent Network proceeding, Ameritech defines an adjunct as follows:

An 'adjunct' is a network system that provides service-specific logic in response to an AIN switching system. Adjuncts contain logic and programs that permit them to exchange information with AIN switches regarding calls in progress. An adjunct is functionally equivalent to an SCP as a service logic execution platform, but the adjunct communicates with an AIN switch via high speed data links rather than via 56 kbps CCS links like the SCP. 40

Thus, Ameritech could discriminate in favor of ACI or its customers by modifying the service logic residing in an SCP associated with an end office or in the attached adjunct.

Another area in which I strongly disagree with Mr. Kocher's conclusions relates to the provision of local distribution facilities, e.g., unbundled local loops. Essentially, he argues that (a) because the local loop facilities used to serve Ameritech's customers are co-mingled with the local loop facilities used by competitors and utilize the same distribution and feeder systems, and (b) because the loops are assigned by automatic systems that do not recognize the identity of the requesting carrier or customer, discrimination would be difficult to carry out and easy to detect.

However, just as the local exchange network is changing through the addition of increased intelligence that allows individual fine tuning or customization of services to meet specific customer requirements, so are the local distribution facilities. Rather than simply carrying ordinary analog voice and low-speed data signals, twisted pair copper loops are being used to carry high-speed digital signals as well. The products that permit the use of twisted pair copper

In some implementations, the adjunct may be referred to as a Service Node.

Comments of the Ameritech Operating Companies in CC Docket No. 91-346, dated February 28, 1991, at footnote 5.

loops for carrying high-speed digital signals are often referred to generically as xDSL, where DSL is an acronym for Digital Subscriber Line. Varieties of xDSL include: High Data Rate DSL (HDSL), Symmetric DSL (SDSL), Asymmetric DSL (ADSL), Very High Data Rate DSL (VDSL), and Rate Adaptive DSL (RADSL). All of these products use sophisticated digital signal processing and other advanced techniques to make use of frequency ranges that lie above those ranges normally used by voice transmission. Through the use of multiplexing, these systems can be used to carry a mixture of local, intraLATA long-distance, and interLATA long-distance voice, data, image, and even video services directly to customer locations. 41

Since all of these systems attempt to squeeze additional capacity out of loop plant that was designed to carry less demanding voice signals, their performance is dependent on the condition of the individual copper pairs and the presence of other digital signals. This means that many copper lines may require individual treatment in terms of reconditioning or rebuilding in order to carry high-speed digital signals directly to the customers' premises. It also means that the performance, once installed, is dependent upon how other digital signals (e.g., standard T1 and ISDN) signals are carried within the same cable sheath or binder group. Because of this need for individual treatment and the susceptibility of the systems to interference from other signals within the cable, there is a significantly increased risk that Ameritech will discriminate in favor of its own competitive operations. The risk increases because Ameritech alone controls the pace and diligence with which the reconditioning or rebuilding is accomplished and the placement of digital signals within the cable itself.

According to a recent trade journal article, three of the BOCs have promised ADSL services to consumers. See Snyder, Beth, "ADSL pledge," <u>Telephony</u> (May 26, 1997), at 7.

VI. Summary and Conclusions

To summarize, because of the increased complexity of the required forms of interconnection, incumbent local exchange carriers have an increased ability to discriminate and to raise unfounded claims of technical harm and technical infeasibility in the provision of advanced forms of interconnection. Thus, they have the power to thwart or delay the development of advanced competitive long-distance services that are increasingly critical to interexchange carriers in differentiating their services in an intensely competitive market. Because these advanced forms of interconnection go far beyond the basic forms of interconnection required to achieve equal access following divestiture, past experience with the interconnection of traditional voice and data networks will be less useful as a regulatory tool for preventing, detecting, and remedying discrimination.

I hereby swear, under penalty of perjury, that the foregoing is true and correct, to the best of my knowledge and belief.

Dale N. Hatfield

Subscribed and worn before me this 5th day of June, 1997.

Vamil Junan Notary Public

My Commission Expires March 11, 2000 2000 Diagonal Hay, • Bookler • CO • 20001

My commission expires:

DOCKET FILE COPY ORIGINAL

Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554

In the	e Matter of)	
	- 112)	
	Application of Ameritech)	
	Michigan Pursuant to Section)	
	271 of the Telecommunications)	CC Docket No. 97-137
	Act of 1996 to Provide In-)	
	Region, InterLATA Services in)	
	Michigan)	

Exhibit I:
Affidavit of Peter P. Guggina
on Behalf of MCI Telecommunications Corporation

Before the FEDERAL COMMUNICATIONS COMMISSION Washington, D.C. 20554

In the Matter of)	
)	
Application of Ameritech Michigan)	
Pursuant to Section 271 of the)	CC Docket No. 97-137
Telecommunications Act of 1996 to)	
Provide In-Region, InterLATA)	
Services in Michigan)	

AFFIDAVIT OF PETER P. GUGGINA on Behalf of MCI Telecommunications Corporation

- I, Peter Guggina, being duly sworn and under oath, depose and state as follows:
- 1. I am employed by MCI Telecommunications Corporation (MCI) as the Director of Technical Standards Management. In this capacity, I am responsible, directly and through my staff, for planning, coordinating and executing MCI's participation in the industry forums and standards process. My position provides a daily view of the status and events that take place in these arenas. I am in contact with other industry participants in an attempt to resolve issues and to make the process more effective.
- 2. I serve as MCI's representative to the Board of Directors of the Alliance for Telecommunications Industry Solutions (ATIS), formerly the Exchange Carrier Standards Association (ECSA), which sponsors many telecommunications standards setting bodies and industry forums. In addition, I am MCI's representative to the American National Standards Institute (ANSI), and I serve as Chairman of the Carrier Liaison Committee (CLC), which provides oversight management of the ATIS/CLC-sponsored forums. Further, I am Chairman of the Interexchange Carriers Industry Committee (ICIC), an industry group that reviews technical

subject matters associated with exchange access services. Chairing the ICIC provides me additional exposure to a cross-section of industry activities related to the forums and standards process. I am also a voting member of the FCC's North American Numbering Counsel, a Federal Advisory Group. My involvement with these industry activities began in 1984, and I have over 20 years of telecommunications operations, engineering, and network planning experience. I previously submitted testimony to the Commission in connection with the proceedings on Computer III Further Remand Proceedings: Bell Operating Company Provision of Enhanced Services, Docket No. 95-20.

- 3. The purpose of this affidavit is to explain how the BOCs have for years dominated the standards process and delayed or prevented the implementation of standards needed to ensure fair competition. The interrelationship between standards, Bellcore's "generic requirements," industry forums, technical development, and implementation processes allow the BOCs to delay or manipulate the provision of critical capabilities needed for competition. The BOCs can achieve the result that serves their interests by controlling outcomes in standards committees and forums, by controlling how capabilities are specified in Bellcore's requirements, and by controlling when and whether a solution will be implemented. Based on my 13 years of experience with the BOCs in standards bodies, it has become clear that when it is in their economic interests to do so, BOCs are willing and readily able to slow-roll the standards process or prevent altogether the adoption or implementation of standards.
- 4. Industry standards are critical to determining how competitors can connect with BOC networks, and thus can be of life or death consequence to effective and fair competition.

 Development of new technologies such as Signaling System 7 ("SS7"), the Advanced Intelligent

Network ("AIN"), state-of-the-art Operations Support Systems ("OSS"), and other network unbundling, require BOCs and interexchange carriers ("IXCs") to work together cooperatively. When interexchange carriers request new forms of access to support new services, BOCs with long-distance affiliates could share the required interconnection information only with their long-distance affiliates, or provide the necessary information to their affiliates before they provide it to others. The need for established standards applicable to BOC interconnections with all IXCs is particularly acute as the network becomes more sophisticated and carriers are unable to rely on prior experience or standards.

- 5. The provision of "intelligent network" services is an example of the importance of establishing industry standards. For example, even a simple service such as "follow-me/find me," which routes a call to the customer's current destination, requires uniform standards to allow calls to be routed to any number in any region. Without established standards defining a desired service, IXCs must negotiate complex service and testing agreements with each BOC, a process that can take years -- particularly when the BOC has no incentive to reach an agreement. The standards process, used properly, results in a blueprint that describes each service, applicable protocols, interconnections and interfaces, avoiding the need for protracted, case-by-case negotiation to define each of these items. When all IXCs are ordering off the same blueprint, the BOC's ability to favor its interexchange affiliate is lessened.
- 6. The forums and committees that establish industry standards consist of both the incumbent telephone companies and firms that want to compete with them and/or connect to their telephone networks. The BOCs are major players in these forums and committees. When they participate in these bodies as both monopoly providers of local services and competing

providers of other services, they have the incentive to use their power in these bodies to make decisions that will favor their own operations over those of competitors.

THE BOCS HAVE USED THE STANDARDS PROCESSES TO STALL DEVELOPMENTS AND IMPLEMENTATIONS NEEDED BY COMPETITORS.

- 7. The industry forums sponsored by ATIS were created to provide vehicles for the resolution of concerns about exchange access issues among representatives of the various segments of the telecommunications industry. The forums now establish <u>de facto</u> standards for implementation and operations issues relating to exchange access. In addition to the ATIS forums, formal standards committees have been created within the industry to establish technical standards. ANSI accredits standards-developing bodies. The most significant ANSI-accredited standards body I have been involved with is the Standards Committee T1 Telecommunications ("T1"). T1 addresses long-term telecommunications issues and is responsible for establishing actual standards for the telecommunications industry.
- 8. The BOCs have historically controlled the industry forums and standards processes and, therefore, have determined whether, when and how technical features and functions will be provided through the local exchange. Indeed, in deciding not to select ATIS as North American Numbering Plan Administrator, the Commission stated that it "share[d] the concerns expressed in the comments of the appearance of bias associated with entities such as NECA and ATIS, both of whom historically have been closely associated with LECs." Similarly, BOCs comprise most of the attendees at USTA meetings associated with industry forum positioning for the CLC,

¹ In re: Administration of the North American Numbering Plan, ¶ 57 (CC Docket No. 92-237, July 13, 1995).

giving them effective control. The BOCs' control of USTA is reinforced by the disproportionate amount of financial support they provide to USTA. The BOCs' dominance of USTA was demonstrated by the massive lobbying campaign conducted by USTA to ease the standards for BOC entry into long-distance under the federal telecommunications legislation that was passed last year.²

- 9. The BOCs use a variety of tactics to delay the adoption of standards, such as unnecessarily slicing issues into multiple pieces, each of which must be resolved; changing the originator's issue statement and objective in order to shift the focus from critical IXC needs to less important details that will have little impact on the BOCs;³ dominating the consensus process by sending droves of representatives to industry forums (a luxury BOCs can afford based on their captive ratebase); endlessly prolonging discussion instead of taking focused action; and resolving only to further investigate a request for years. It is a simple matter for the BOCs to delay this process using any of these means, and they do so whenever it is in their interests.
- 10. In addition, even when the BOCs have exhausted delay tactics, they can refuse, and often have refused, to implement final standards. This is one reason why voluntary unbundling under the Open Network Architecture proceedings never occurred. All of the forums and standards bodies operate on a voluntary basis, which means that any resolution reached in the

² It is my understanding that Sprint resigned from USTA during this period because of the BOCs' dominance.

³ The industry forums use a formal process of issue introduction; issue statements are used to define the problem to be solved and the desired outcome.

forum and standards process is not binding on any individual participant. Months and even years can be spent in the process to achieve issue resolution, only to find that no BOC or other incumbent exchange carrier will implement the solution to which the industry has agreed.

- 11. If the incentive BOCs have to cooperate with the industry is removed by allowing their entry into the long-distance market before local markets are competitive, I have no doubt that BOCs will delay even further the adoption and implementation of standards needed to allow interexchange carriers to compete on equal terms with BOCs' long-distance affiliates. Rather than adopting standards that will apply equally to all long-distance carriers, BOCs will undoubtedly further their own interests by supplying their affiliates with requisite information for effective access and interconnection, at the same time they withhold this information from competing long-distance providers by delaying the standards process. I believe it would be exceedingly difficult for any regulator to discover each instance of a BOC favoring its affiliate in this way, particularly where there is simply a lag between the time the BOC affiliate and the competitor receives the information. However, even a slight lag between the time BOCs' affiliates are given requisite interconnection information, and the time new entrants are given this information, can have a devastating impact on competition. Already handicapped by not having an established local customer base, competing IXCs will not be able to compete on equal terms for a customer's unified telecommunications needs, let alone prevent discrimination by BOCs, without pre-defined standards applicable to all BOC-IXC interconnections.
- 12. Once competing providers have a significant presence in the local market, BOCs should have little incentive to delay the standards process because their interexchange affiliates will depend on the cooperation of other local companies. This can be illustrated by an example

involving AIN, which is also discussed in the affidavit of Dale Hatfield. Assume a service that requires a certain 3-digit code to trigger a query to an IXC intelligent network database -- a verbally significant number such as "BUY CARS." Each local switch must recognize the prefix "BUY" as a trigger to launch a query to a database to determine which of several car dealerships to which the call should be routed. Today, IXCs depend on the cooperation of monopoly local providers to load the appropriate information in local switches to recognize "BUY" as a trigger point for a database query. But when competing local providers have a significant market presence, the BOC's interexchange affiliate will require cooperation from other local providers in order to provide its own intelligent network service. As soon as the BOCs' long-distance affiliates depend to a significant degree on the cooperation of unaffiliated local providers to provide new services, the BOCs will have an incentive to cooperate in the development and implementation of standards defining the applicable services, interfaces, and protocols.

AIN STANDARDS

- 13. AIN is an evolving network and service control architecture which allows carriers to migrate some service control functions from switch-resident databases into separate databases, permitting rapid deployment of customer-specific features without reliance on switch vendors. As noted above and in the affidavit of Dale Hatfield, many AIN-type services depend on the full cooperation of BOCs. The BOCs, however, have effectively prevented standard-based implementation in many AIN/IN areas.
- 14. For example, MCI has submitted contributions to the Network Interoperability and Interconnection Forum (NIIF) asking it to adopt AIN interconnection mechanisms that make use

of existing SS7 protocol to access databases in third-party networks. Full AIN service offerings will remain elusive absent industry agreement on these critical mechanisms for routing query/response messages between BOCs and IXCs. Comparable mechanisms have been successfully used in accessing Line Information Data Bases (LIDB), and do not require any standards or protocol changes. Ameritech and other RBOCs have refused to accept this and other similar proposals that would facilitate AIN interconnection on the pretense that such SS7 routing mechanisms may cause harm to their network. Moreover, in the discussions of IILC Issue 026 (Long Term Unbundling and Network Evolution) the BOCs have demanded the inclusion of "Mediation nodes" in their network with the knowledge that such devices have not been defined nor agreed to in any industry standard committee.⁴

- 15. Ameritech and other BOCs have also refused to unbundle their AIN Service Creation Environment (SCE) platform, which would allow third party service providers to create and provision AIN services for their customers. And the BOCs have been slow in agreeing to create an ANSI standard for Intelligent Networks (IN). It has taken Technical Committee T1S1 over three years to generate a draft ANSI standard for IN, mainly due to the delay tactics of the BOCs.
- 16. The Task Group for IILC Issue 026 developed a high-level physical and logical unbundling plan for the local exchange network. The Task Group reached consensus on this plan more than two years ago. The plan is meaningless, however, without detailed implementing specifications, which the BOCs have delayed at every turn. For example, the

⁴ Mediation nodes are devices that perform message screening and control. They will cause unnecessary delays in the service offering and could cause congestion in the SS7 message flow to the STP. Mediation could also pose a security risk and compromise of proprietary data destined to the IXC.